organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Diphenylcarbonohydrazide *N*,*N*-dimethylformamide

Ai-yun Zhang,^a* Si-yao Ma^b and Dong Bu^a

^aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China, and ^bDepartment of Mathematics, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China

Correspondence e-mail: zay@hpu.edu.cn

Received 14 July 2010; accepted 30 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.193; data-to-parameter ratio = 13.9.

In the title compound, $C_{13}H_{14}N_4O\cdot C_3H_7NO$, a 1,5-phenylcarbonohydrazide molecule cocrystallizes with an *N*,*N*dimethylformamide molecule. In the 1,5-phenylcarbonohydrazide molecule, the two phenyl rings are twisted by an angle of 45.8 (5)°. Intermolecular N-H···O hydrogen bonds and weak intermolecular C-H···O interactions contribute to a supramolecular two-dimensional network in the (101) plane.

Related literature

For literature on the applications of 1,5-diphenylcarbonohydrazide, an artificial electron-donor material, see: Verma & Singh (1995); Melis *et al.* (1992); Prasad *et al.* (1991); Sundari & Raghavendra (1990); Mishra *et al.* (1993). For the structure of diphenylcarbonohydrazide, see: De Ranter *et al.* (1979). For related structures, see: Hamuro *et al.* (1999); Jian *et al.* (2003); Wei *et al.*(2006); Wang *et al.* (2001).

 $V = 1631.87 (11) \text{ Å}^3$

 $0.21 \times 0.20 \times 0.18 \; \mathrm{mm}$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 K

Z = 4

Experimental

Crystal data $C_{13}H_{14}N_4O \cdot C_3H_7NO$ $M_r = 315.38$ Monoclinic, $P2_1/c$ a = 5.9774 (2) Å b = 14.8531 (6) Å c = 18.4827 (7) Å $\beta = 96.029$ (3)°

Data collection

Bruker APEXII CCD area-detector	23310 measured reflections
diffractometer	2902 independent reflections
Absorption correction: multi-scan	2061 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.049$
$T_{\min} = 0.982, T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	209 parameters
$wR(F^2) = 0.193$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
2902 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O1^{i}$	0.86	2.13	2.975 (3)	166
$C6-H6A\cdots O2^{ii}$	0.93	2.58	3.370 (4)	143
$N2-H2B\cdotsO1^{iii}$	0.86	2.45	3.121 (3)	135
N3−H3 <i>B</i> ···O2	0.86	2.12	2.895 (3)	149
$N4-H4B\cdots O2^{ii}$	0.86	2.31	3.079 (3)	148

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y, z; (iii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Universities and Colleges Natural Science Foundation of Henan (grant No. 2009 A150011) and the Natural Science Foundation of China (grant No. 200903036).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2045).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- De Ranter, C. J., Blaton, N. M. & Peeters, O. M. (1979). Acta Cryst. B35, 1295– 1297.
- Hamuro, Y., Marshall, W. J. & Scialdone, M. A. (1999). J. Comb. Chem. 1, 163– 172.

- Jian, F. F., Xiao, H. L. & Wang, Y. (2003). Jiegou Huaxue (Chin. J. Struct. Chem.), 22, 55–59.
- Melis, A., Nemson, J. A. & Hanison, M. A. (1992). Biochim. Biophys. Acta, 1100, 312–320.
- Mishra, U., Kashyap, A. K. & Pande, J. (1993). Environ. Technol. 14, 373-378.
- Prasad, S. M., Singh, J. B., Rai, L. C. & Kumar, H. D. (1991). FEMS Microbiol. Lett. 82, 95–100.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sundari, D. S. & Raghavendra, A. S. (1990). Photosynth. Res. 23, 95-99.
- Verma, K. & Singh, D. P. (1995). Curr. Microbiol. 30, 373-379.
- Wang, Y., Jian, F.-F., Yang, X.-J., Lu, L.-D., Wang, X., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2001). Acta Cryst. E57, 0312–0314.
- Wei, C.-X., Chen, J.-X., Li, Z.-S., Lan, T.-Y. & Huang, Y.-B. (2006). Acta Cryst. E62, o1719–o1721.

supplementary materials

Acta Cryst. (2010). E66, o2734-o2735 [doi:10.1107/S160053681003922X]

1,5-Diphenylcarbonohydrazide N,N-dimethylformamide

A. Zhang, S. Ma and D. Bu

Comment

1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, has a variety of applications (Verma & Singh, 1995; Melis *et al.*, 1992; Prasad *et al.*, 1991; Sundari & Raghavendra, 1990; Mishra *et al.*, 1993). The structure of diphenylcarbonohydrazide ($C_{13}H_{14}N_4O$), (De Ranter *et al.*, 1979) and a number of diphenylcarbonohydrazide derivatives have been prepared (Jian *et al.*, 2003; Wang *et al.*, 2001; Hamuro *et al.*, 1999; Wei *et al.*, 2006).

The title compound, is a co-crystal with a 1,5-phenylcarbonohydrazide molecule and a *N*, *N*-dimethylformamide molecule in the unit cell (Fig. 1). In the 1,5-phenylcarbonohydrazide molecule, the dihedral angles of the two benzene rings are twisted by an angle of 45.8 (5)°. The C7/N1/N2/C8 (-91.6 (3)°) and C7/N3/N4/C1 (75.3 (3)°) torsion angles confirm this twist. Crystal packing is dominated by N—H…O hydrogen bonds and weak C—H…O intermolecular interactions (Table 1) which contribute to a supermolecular 2-D network formed in the 101 plane (Fig. 2).

Experimental

A mixture of 1, 5-diphenylcarbazide (0.0233 g), $Cd(NO_3)_2(0.0132 g)$, *N*, *N*-dimethylformamide (5 ml), and water (12 ml) was stirred at room temperature for 6 h. The solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, the title compound appeared about a month later. The title compound was filtered, washed with water and dried at 298K. The single crystals were grown by slow evaporation of water and *N*, *N*-dimethylformamide in the filtered mixture of 1, 5-diphenylcarbazide, $Cd(NO_3)_2$, *N*, *N*-dimethylformamide, and water at 298K.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH₃) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times (NH), 1.2 (CH) or 1.2 (CH₃) times U_{eq} of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, $C_{16}H_{21}N_5O_2$, showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Packing diagram for the title compound viewed down the *b* axis. Dashed lines indicate N—H···O and C—H···O hydrogen bonds forming an infinite two-dimensional polymeric chain along the *a* axis.

F(000) = 672 $D_x = 1.284 \text{ Mg m}^{-3}$

 $\theta = 2.6-21.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.21 \times 0.20 \times 0.18 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3501 reflections

1,5-Diphenylcarbonohydrazide N,N-dimethylformamide

Crystal data
C ₁₃ H ₁₄ N ₄ O·C ₃ H ₇ NO
$M_r = 315.38$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 5.9774 (2) Å
<i>b</i> = 14.8531 (6) Å
c = 18.4827 (7) Å
$\beta = 96.029 (3)^{\circ}$
$V = 1631.87 (11) \text{ Å}^3$

$$Z = 4$$

Data collection

Bruker APEXII CCD area-detector diffractometer	2902 independent reflections
Radiation source: fine-focus sealed tube	2061 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.049$
ϕ and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -7 \rightarrow 7$
$T_{\min} = 0.982, \ T_{\max} = 0.984$	$k = -17 \rightarrow 17$
23310 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.193$ S = 1.062902 reflections 209 parameters 0 restraints Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1085P)^2 + 0.5441P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Primary atom site location: structure-invariant direct Extinction coefficient: 0.014 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4510 (4)	0.55844 (17)	0.25962 (14)	0.0456 (6)
C2	0.6356 (5)	0.5015 (2)	0.26959 (15)	0.0573 (8)
H2A	0.7563	0.5097	0.2423	0.069*
C3	0.6407 (5)	0.4328 (2)	0.31971 (17)	0.0633 (8)
H3A	0.7645	0.3946	0.3256	0.076*
C4	0.4651 (5)	0.4197 (2)	0.36131 (16)	0.0639 (8)
H4A	0.4689	0.3728	0.3947	0.077*
C5	0.2840 (5)	0.4774 (2)	0.35257 (16)	0.0608 (8)
H5A	0.1658	0.4698	0.3809	0.073*
C6	0.2757 (4)	0.54590 (18)	0.30260 (15)	0.0509 (7)
H6A	0.1521	0.5842	0.2974	0.061*
C7	0.5425 (4)	0.57813 (16)	0.09720 (13)	0.0401 (6)
C8	0.8908 (4)	0.71277 (16)	0.02790 (12)	0.0396 (6)
C9	0.6983 (4)	0.74404 (19)	-0.01259 (15)	0.0518 (7)
H9A	0.5677	0.7095	-0.0165	0.062*
C10	0.7002 (5)	0.8262 (2)	-0.04697 (17)	0.0646 (8)
H10A	0.5706	0.8467	-0.0742	0.078*
C11	0.8908 (5)	0.8785 (2)	-0.04161 (17)	0.0665 (9)
H11A	0.8907	0.9339	-0.0650	0.080*
C12	1.0807 (5)	0.8478 (2)	-0.00140 (17)	0.0637 (8)
H12A	1.2104	0.8828	0.0023	0.076*
C13	1.0828 (4)	0.76617 (19)	0.03362 (15)	0.0506 (7)
H13A	1.2129	0.7466	0.0612	0.061*
C14	0.9098 (5)	0.78263 (19)	0.25852 (16)	0.0550 (7)
H14A	0.7616	0.8000	0.2453	0.066*
C15	0.9162 (6)	0.8990 (2)	0.34963 (18)	0.0675 (9)
H15A	1.0221	0.9236	0.3871	0.101*
H15B	0.7887	0.8755	0.3710	0.101*
H15C	0.8675	0.9454	0.3154	0.101*
C16	1.2467 (5)	0.8018 (2)	0.33949 (17)	0.0656 (8)
H16A	1.3015	0.8413	0.3785	0.098*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16B	1.3423	0.8060	0.3010	0.098*
H16C	1.2467	0.7410	0.3571	0.098*
N1	0.7115 (3)	0.57302 (14)	0.05309 (11)	0.0445 (5)
H1A	0.7038	0.5346	0.0181	0.053*
N2	0.8964 (3)	0.63018 (13)	0.06480 (11)	0.0437 (5)
H2B	1.0117	0.6151	0.0941	0.052*
N3	0.5839 (4)	0.63150 (15)	0.15609 (11)	0.0510 (6)
H3B	0.6994	0.6664	0.1597	0.061*
N4	0.4411 (4)	0.63076 (15)	0.21120 (12)	0.0536 (6)
H4B	0.3483	0.6743	0.2152	0.064*
N5	1.0222 (3)	0.82726 (15)	0.31247 (11)	0.0483 (6)
01	0.3662 (3)	0.53634 (12)	0.08206 (10)	0.0491 (5)
O2	0.9826 (3)	0.72042 (14)	0.22424 (12)	0.0664 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0427 (14)	0.0537 (16)	0.0404 (14)	-0.0021 (11)	0.0043 (11)	-0.0108 (11)
C2	0.0430 (15)	0.073 (2)	0.0570 (17)	0.0041 (13)	0.0103 (13)	-0.0061 (15)
C3	0.0531 (17)	0.076 (2)	0.0592 (18)	0.0144 (14)	-0.0027 (14)	0.0009 (15)
C4	0.0681 (19)	0.0691 (19)	0.0538 (17)	-0.0009 (16)	0.0025 (15)	0.0077 (15)
C5	0.0565 (17)	0.072 (2)	0.0562 (17)	-0.0062 (15)	0.0179 (14)	-0.0011 (15)
C6	0.0445 (15)	0.0541 (16)	0.0558 (16)	0.0024 (12)	0.0129 (12)	-0.0057 (13)
C7	0.0391 (13)	0.0404 (13)	0.0411 (13)	-0.0030 (10)	0.0052 (10)	0.0033 (10)
C8	0.0367 (13)	0.0462 (14)	0.0367 (13)	-0.0037 (10)	0.0078 (10)	-0.0056 (10)
C9	0.0366 (14)	0.0610 (17)	0.0564 (16)	-0.0053 (12)	-0.0023 (12)	0.0045 (13)
C10	0.0560 (18)	0.071 (2)	0.0651 (19)	0.0068 (15)	-0.0035 (14)	0.0140 (15)
C11	0.073 (2)	0.0569 (18)	0.069 (2)	-0.0022 (15)	0.0072 (16)	0.0169 (15)
C12	0.0573 (18)	0.0631 (19)	0.071 (2)	-0.0181 (14)	0.0092 (15)	0.0067 (16)
C13	0.0392 (14)	0.0584 (17)	0.0536 (16)	-0.0074 (12)	0.0012 (12)	0.0020 (13)
C14	0.0434 (15)	0.0590 (17)	0.0609 (17)	0.0041 (13)	-0.0024 (13)	0.0002 (14)
C15	0.084 (2)	0.0539 (17)	0.0676 (19)	0.0083 (16)	0.0240 (17)	-0.0042 (15)
C16	0.0593 (18)	0.072 (2)	0.0623 (18)	0.0048 (15)	-0.0112 (15)	-0.0066 (15)
N1	0.0410 (11)	0.0466 (12)	0.0468 (12)	-0.0116 (9)	0.0092 (9)	-0.0087 (9)
N2	0.0345 (10)	0.0501 (13)	0.0453 (12)	-0.0064 (9)	-0.0018 (9)	0.0027 (9)
N3	0.0486 (13)	0.0596 (14)	0.0468 (12)	-0.0145 (10)	0.0146 (10)	-0.0109 (10)
N4	0.0550 (13)	0.0573 (14)	0.0512 (13)	0.0062 (11)	0.0181 (11)	-0.0043 (11)
N5	0.0454 (12)	0.0487 (13)	0.0503 (13)	0.0043 (10)	0.0024 (10)	-0.0043 (10)
01	0.0416 (10)	0.0540 (11)	0.0520 (11)	-0.0122 (8)	0.0061 (8)	-0.0046 (8)
02	0.0627 (13)	0.0650(13)	0.0687 (13)	0.0034 (10)	-0.0060 (10)	-0.0200 (11)

Geometric parameters (Å, °)

C1—C2	1.388 (4)	C11—C12	1.368 (4)
C1—C6	1.392 (3)	C11—H11A	0.9300
C1—N4	1.395 (3)	C12—C13	1.374 (4)
C2—C3	1.376 (4)	C12—H12A	0.9300
C2—H2A	0.9300	С13—Н13А	0.9300
C3—C4	1.378 (4)	C14—O2	1.226 (3)

С3—НЗА	0.9300	C14—N5	1.321 (4)
C4—C5	1.376 (4)	C14—H14A	0.9300
C4—H4A	0.9300	C15—N5	1.449 (3)
C5—C6	1.371 (4)	C15—H15A	0.9600
С5—Н5А	0.9300	C15—H15B	0.9600
С6—Н6А	0.9300	C15—H15C	0.9600
C7—O1	1.230 (3)	C16—N5	1.433 (4)
C7—N3	1.348 (3)	C16—H16A	0.9600
C7—N1	1.365 (3)	C16—H16B	0.9600
C8—C13	1.390 (4)	C16—H16C	0.9600
C8—C9	1.385 (4)	N1—N2	1.392 (3)
C8—N2	1.402 (3)	N1—H1A	0.8600
C9—C10	1.377 (4)	N2—H2B	0.8600
С9—Н9А	0.9300	N3—N4	1.396 (3)
C10-C11	1.373 (4)	N3—H3B	0.8600
C10—H10A	0.9300	N4—H4B	0.8600
C2—C1—C6	118.6 (3)	C13—C12—H12A	119.5
C2-C1-N4	122.3 (2)	C12—C13—C8	120.1 (3)
C6—C1—N4	119.0 (2)	С12—С13—Н13А	120.0
C3—C2—C1	120.2 (3)	С8—С13—Н13А	120.0
С3—С2—Н2А	119.9	O2—C14—N5	126.0 (3)
C1—C2—H2A	119.9	O2—C14—H14A	117.0
C4—C3—C2	121.0 (3)	N5-C14-H14A	117.0
С4—С3—НЗА	119.5	N5—C15—H15A	109.5
С2—С3—НЗА	119.5	N5-C15-H15B	109.5
C5—C4—C3	118.9 (3)	H15A—C15—H15B	109.5
C5—C4—H4A	120.6	N5-C15-H15C	109.5
C3—C4—H4A	120.6	H15A—C15—H15C	109.5
C6—C5—C4	120.9 (3)	H15B—C15—H15C	109.5
С6—С5—Н5А	119.6	N5-C16-H16A	109.5
С4—С5—Н5А	119.6	N5-C16-H16B	109.5
C5—C6—C1	120.5 (3)	H16A—C16—H16B	109.5
С5—С6—Н6А	119.8	N5-C16-H16C	109.5
С1—С6—Н6А	119.8	H16A—C16—H16C	109.5
O1—C7—N3	124.1 (2)	H16B—C16—H16C	109.5
O1—C7—N1	120.4 (2)	C7—N1—N2	119.9 (2)
N3—C7—N1	115.5 (2)	C7—N1—H1A	120.1
C13—C8—C9	118.8 (2)	N2—N1—H1A	120.1
C13—C8—N2	119.0 (2)	N1—N2—C8	118.7 (2)
C9—C8—N2	122.2 (2)	N1—N2—H2B	120.7
C10—C9—C8	120.0 (3)	C8—N2—H2B	120.7
С10—С9—Н9А	120.0	C7—N3—N4	120.7 (2)
С8—С9—Н9А	120.0	C7—N3—H3B	119.7
C11—C10—C9	121.0 (3)	N4—N3—H3B	119.7
C11—C10—H10A	119.5	N3—N4—C1	119.1 (2)
C9—C10—H10A	119.5	N3—N4—H4B	120.5
C10—C11—C12	119.1 (3)	C1—N4—H4B	120.5
C10—C11—H11A	120.5	C14—N5—C16	120.9 (2)
C12—C11—H11A	120.5	C14—N5—C15	120.9 (2)

supplementary materials

C11—C12—C13	121.0 (3)	C16—N5—C15	118.0 (2)
C11—C12—H12A	119.5		
C6—C1—C2—C3	1.7 (4)	C9—C8—C13—C12	-0.9 (4)
N4—C1—C2—C3	177.9 (3)	N2-C8-C13-C12	-179.3 (2)
C1—C2—C3—C4	-0.7 (5)	O1—C7—N1—N2	170.8 (2)
C2—C3—C4—C5	-0.7 (5)	N3—C7—N1—N2	-8.7 (3)
C3—C4—C5—C6	1.0 (5)	C7—N1—N2—C8	-91.6 (3)
C4—C5—C6—C1	0.0 (4)	C13—C8—N2—N1	-173.7 (2)
C2-C1-C6-C5	-1.4 (4)	C9—C8—N2—N1	8.1 (3)
N4—C1—C6—C5	-177.7 (3)	O1—C7—N3—N4	11.1 (4)
C13—C8—C9—C10	0.7 (4)	N1—C7—N3—N4	-169.4 (2)
N2-C8-C9-C10	179.0 (2)	C7—N3—N4—C1	75.3 (3)
C8—C9—C10—C11	-0.3 (4)	C2-C1-N4-N3	19.4 (4)
C9—C10—C11—C12	0.0 (5)	C6—C1—N4—N3	-164.4 (2)
C10-C11-C12-C13	-0.2 (5)	O2-C14-N5-C16	-3.8 (5)
C11—C12—C13—C8	0.7 (4)	O2-C14-N5-C15	-179.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····O1 ⁱ	0.86	2.13	2.975 (3)	166
C6—H6A···O2 ⁱⁱ	0.93	2.58	3.370 (4)	143
N2—H2B…O1 ⁱⁱⁱ	0.86	2.45	3.121 (3)	135
N3—H3B…O2	0.86	2.12	2.895 (3)	149
N4—H4B···O2 ⁱⁱ	0.86	2.31	3.079 (3)	148
	1 (***) + 1			

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*.

